AI

+

Design

AI powered content personalisation for travel

product design
Design for the future
...

AI TRAVEL CHECKOUT SYSTEM_04X  
> INITIATE SESSION :: FAMILY.USER.TYPE_B  
↳ USER PROFILE HASH: IND-3FAM-CONSV  
↳ CONFIG: MULTI-PASSENGER // LOW RISK  
↳ TRAVEL INTENT: TOURISM, CULTURAL, LOW-FLEX  

⎯⎯⎯⎯⎯⎯ PRE-TRIP CALIBRATION SEQUENCE ⎯⎯⎯⎯⎯⎯  
✓ Document Scanner Activated  
✓ Entry Requirements (Visa / Passport)  
✓ Immunisation Status & Health Brief  
✓ Local Law Sensitivity Model  
✓ Accessibility Matrix: Child + Elder Modes  
✓ Privacy Prefilter: HIGH  
✓ Cultural Preference Pack Loaded [v.2.1]  
↳ Content Filter Level: SOFT  
↳ Language Adjust: FORMAL / SIMPLIFIED UI  
↳ Dietary Norms Included: HALAL / VEGETARIAN  
↳ Auto-Translate Flags: JP / KR / ENG / ID  

⎯⎯⎯⎯⎯⎯ DESTINATION PROFILE MATCH ⎯⎯⎯⎯⎯⎯  
↳ SELECTED NODE: SEOUL-JP-KYOTO-ES-BARCELONA  
↳ SIMULATED FLOW PATH: REGION-SEQ: EAST → WEST  
↳ SYSTEM MATCH RANK: 96.01%  
↳ LOCAL DYNAMICS INDEX: MEDIUM FLUX  
↳ PREDICTIVE ADAPTABILITY: 87.2%  

< OUTPUT STACK INITIALISING... >  
→ Visa Walkthrough  
→ Child Safety Tips  
→ Local Emergency Numbers  
→ Trusted Transport Layers  
→ Accommodation Fit (Quiet / Spacious / Lift Access)  
→ Booking Order Finalised  
→ Printed Copy Mode Enabled  
→ Cloud Archive SYNC_IN

⎯⎯⎯⎯⎯⎯ SYSTEM INTEGRITY ⎯⎯⎯⎯⎯⎯  
↳ ENCRYPTION: 7-LAYER AES  
↳ TOKEN COUNT: 164 // COMPRESSED MODE  
↳ UPTIME: 89H :: LAST SYNC: 2.8 MINUTES AGO  
↳ ERROR CHECK: < 0.00091%  
↳ AI OUTPUT TRACE: HUMAN-READABLE  
↳ MODE: NO-AD / NO-COOKIE

// SECURITY NOTICES  
AUTHORIZED USE ONLY // 인증된 사용자만 접근 가능  
アクセス制限中 – 改ざん禁止  
SESSION TAG: FAM_SAFEMODE_X1A  
SCAN INDEX
BACKTRACE ID: 57-9D-IND03

SYSTEM DEVELOPED BY  
PERSONALISATION CORE / GPT-AUX NODE  
NEO_SYDNET | CROSS-CULTURE LABS  
📍 SYD / JKT / SEOUL / BCN< END OF STACK >

NEURAL CHECKOUT SYSTEM V.2.5  
> MODULE: TRAVEL PERSONALISATION LAYER  
↳ SESSION_ID: TSP-49A9C-CAN  
↳ USER ARCHETYPE: SOLO.ADVENTURER.4xC

⎯⎯⎯⎯⎯⎯ SYSTEM PREPROCESS ⎯⎯⎯⎯⎯⎯  

[ CULTURAL MATCHING ] ✓  
[ DOCUMENT REQUIREMENTS ] ✓  
[ HEALTH + SAFETY BRIEFING ] ✓  
[ BEHAVIOURAL TUNING: ACTIVE ]

> Custom outputs calibrated  
> Predictive heuristics: 94.8% confidence  

⎯⎯⎯⎯⎯⎯ CORE OUTPUT STACK ⎯⎯⎯⎯⎯⎯  
→ Passport & Visa Flow  
→ Local Norms Index  
→ Risk Advisory Tier (2.1)  
→ Navigation & Comms Mesh  
→ Suggested Lodging Profile  
→ Activity DNA: risk_tolerant // solo_flex  

⎯⎯⎯⎯⎯⎯ STATUS REPORT ⎯⎯⎯⎯⎯⎯  
↳ SYSTEM STABILITY: NOMINAL  
↳ LANGUAGE INTERFACE: ENG / JP / ID  
↳ CONTEXT WINDOW: 82 TOKENS  
↳ RESPONSE MODE: MULTIMODAL (txt.img.map)

AUTH_TAG: GPT_TRAVEL_ENGINE_Δ  
LOC_CODE: SYD-AUS.4059  
발신지: Neo_Sydney // 중앙 서브넷  

:: SYSTEM BOUNDARY ::  
USER TUNING LOCKED  
EXTERNAL WRITE BLOCK ENABLED  
UNAUTHORISED ACCESS → FLAG [02-R]

Topic
Designing with AI
Project focus
Product Design
mark
Distinction 82%

⚠️ Disclaimer — This Isn’t Your Typical UX Project

This project is not a traditional UX design case study. It was developed as a proof of concept, exploring how AI can create richer, context-aware travel experiences. Given the experimental nature and fast-paced sprint environment, this project doesn’t follow the standard Double Diamond framework. Instead, it focuses on ideation, strategic opportunity mapping, and concept validation—a rapid dive into AI’s potential in design, rather than a full end-to-end UX process.

Observation
Phase
Scoping Problem Space
Secondary Research
Competitor Audit
Concept Framing
Product Pitch
Proof of concept development
Problem Area
Research
Existing Solutions

Low engagement. Lack of relevance.

You’re booking your next holiday or travel adventure, and the itinerary is coming together. You’re excited, right?

Utill you hit the checkout page. Suddenly, all that excitement? Gone. Generic, boring, lifeless. These moments should add magic, not kill it.

But they don’t know you, your vibe, or what would actually elevate your trip. Personalisation? Practically nonexistent. At least, until now.

Problem Area

We noticed personalisation in travel stops the moment you hit ‘book now’—but that’s where it should start

Click to expand

Defining the Gap in Post-Purchase Personalisation

This project started with a simple observation: most travel platforms personalise the search and booking experience, but once a trip is booked, the personalisation stops.

Through initial exploration, I noticed a pattern across platforms like Expedia, Booking.com, and even emerging AI tools. They focus on getting you to complete a purchase, offering filters, smart pricing, and recommended packages during the search phase. But after booking—when you're preparing for your trip—interactions become generic and transactional. Confirmation emails and checkout pages rarely adapt to who you are, where you’re going, or what would actually elevate your experience.

This disconnect became the foundation of the problem space I explored.

For this sprint, we weren’t aiming to reimagine the entire booking journey. Instead, I focused specifically on the post-purchase phase—moments like the checkout screen, confirmation page, and pre-trip reminders. I asked:

“How can AI help personalise these often-overlooked touchpoints to create value for the traveller, not just the business?”

Given the sprint’s scope and pace, I framed the problem around contextual personalisation opportunities that could be unlocked using existing data travel companies already collect (demographics, trip details, preferences), rather than introducing entirely new user flows.

This approach allowed me to zero in on a specific, actionable gap in the user journey:
The missed opportunity to turn post-purchase interactions into moments of added excitement and relevance through AI-driven personalisation.

Research

With no time for user interviews, we flipped the script and used existing data as our playground

Click to expand

Given the fast-paced nature of this project—a design sprint focused on AI exploration—we didn’t have the luxury of conducting primary research, user interviews, or building detailed personas. Instead, my approach was to work within constraints and leverage desk research to understand:

  • What data travel companies already collect.
  • Where in the user journey personalisation tends to stop.
  • How AI could activate existing data at under-utilised touchpoints.

Framing the Research:

Rather than trying to invent new user data pipelines, I focused on data viability—examining the types of user data already available to travel companies:

  • Demographics: Age, nationality, lifestyle info from booking forms and loyalty programs.
  • Trip Context: Travel dates, locations, purpose of visit (business, leisure, adventure).
  • Travel Party Composition: Solo, couple, family, or group bookings.
  • Purchase Behaviours: Add-ons like insurance (e.g., ski insurance suggests activity intent).

This approach was less about what we could collect and more about what’s already sitting in company databases but underutilised.

Insights Derived from Desk Research:

  • Personalisation is front-loaded: Platforms focus personalisation efforts during search and selection but go “generic” post-purchase.
  • Existing AI implementations are reactive: AI chatbots or recommendation engines require the user to take initiative.
  • Users expect seamlessness after booking: Post-purchase touchpoints are treated as confirmation steps, not opportunities for value-add.
  • Data exists, but is under-leveraged: Companies hold enough context to make hyper-relevant suggestions but lack mechanisms to deliver them organically at the right moments.

Research Takeaway:

With no time for persona-building or surveys, the research lens became:

“How can I design a solution that activates dormant user data to create proactive, context-aware experiences at post-purchase touchpoints?”

Existing Solutuons

Everyone’s personalising the search—nobody’s personalising the journey after you’ve booked

Click to expand

Opportunity Mapping, Not Competitor Listing

When evaluating existing travel platforms and AI implementations, the goal wasn’t to compete feature-for-feature, but to identify whitespace—areas where current solutions fall short.

The Concept

Infinitely scalable personalisation.

The opportunity for travel businesses is to harness AI to craft engaging experiences unique to each user’s particular context, offering a level of creativity and personalisation that would be impossible without LLM’s.

*Yes, AI is a buzzword, but here’s what makes our approach unique. Large Language Models (LLMs) are often used generically—think chatbots everywhere. But as AI students, we understand the real potential and nuances of LLMs: where they excel and where traditional algorithms are better suited. In this project, we’ve strategically applied LLMs to tackle advanced personalisation, creating a uniquely tailored travel experience that goes far beyond simple recommendations.

...
The Solution

the product

Try out our product! 
enter as many or as little feilds as you like
and judge the output

Name
Occupation
Group Size
Travel History
Interests
Experience level
Destination
Travel Month
Stay Preference
Stay length (nights)
Budget
Content focus
Response loading

Heading

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Oops! Something went wrong while submitting the form.
The Solution

The Product

JSON Example
when hover starts scrolling down

This is the default text value

when hover, background turn black and image for bellow changes

...

JSON Example
when hover starts scrolling down

This is the default text value

when hover, background turn black and image for bellow changes

...

JSON Example
when hover starts scrolling down

This is the default text value

when hover, background turn black and image for bellow changes

...

What is it?

How does it work?

01
Step

Gathering Known Data

The program begins by combining any existing user information—such as travel preferences, group size, or past behaviour—with real-time data about the searched destination, including weather, hotel availability, popular activities, and cultural factors.

02
Step

Persona Expansion

Using the combined input, the system builds a more detailed travel persona. This includes generalising traits and expanding on inferred needs, like budget considerations, temporal experience, or language support.

03
Step

Personalised Checkout Page

Finally, the program generates a customised post-search checkout page. This page includes tailored recommendations for accommodations, activities, health and safety tips, required travel documents, and local transport options—curated to align with the user's persona and destination data.

How does it work?

[Backend]

  • Simulated user data stored in JSON format.
  • A Python program using the Streamlit framework, Amadeus API, and WordWare APIs.
  • Amadeus API (testing version) used to locate hotels and activities within target areas.
  • WordWare Agent 1: Extracts and personalises user travel information.
  • Wordware agent 2: Refines hotel search filters based on user preferences.

Frontend

A Figma prototype was iteratively developed alongside the backend, beginning with wireframes to establish layouts and design patterns. Internal reviews refined the high-fidelity mock-ups to create a polished, responsive, user-centric interface.

Currently does not interface with the backend, and exists to showcase how it could look.

Development Journeys are hard.

This is the default text value

01
Assumptions

With guidance from a leading AI researcher in Australia, we created a rapid mockup using Wordware.ai, feeding a set of inputs (name, age, and nationality) into LLMs to extrapolate detailed personality traits and preferences and match users with accommodation.‍

While it technically functioned, it also revealed a hard truth: our solution offered no real advantage over existing recommendation algorithms. ‍

As we investigated existing systems more deeply, we discovered large companies had already built sophisticated algorithms to match users with destinations, accommodations, and activities and our assumption that travel checkout pages are ineffective and fail to leverage the extensive customer data they collect was incorrect.

While existing recommendation systems are smart, they lacked personal context, so our new focus revolved around each users unique context. For example, a solo traveller from (warm) Singapore would prepare for Norway very differently than a family from (cold) Canada; their interests, packing needs, and essential information could vary significantly.‍

This led to a redefined process:

  • Expand the user persona with context
  • Match the user with specific options that go beyond generic suggestions.
  • Generate specific content.
  • Evaluate how the user’s background affects their travel experience.
02
Reframing the solution
03
Fine tuning LLM's

Our refined approach encountered challenges specific to LLMs:

  • Providing Useful Depth:
    Context-specific depth was crucial but challenging. For example, a traveller from a warm climate visiting Europe in winter would need detailed packing advice. We considered using conditional queries under each section to dynamically fetch and return this level of detail.
  • Avoiding Stereotypes:
    Relying on LLMs to extrapolate user traits occasionally led to unhelpful assumptions—like associating certain occupations or nationalities with overly stereotypical interests.
  • Balancing structure and creativity:
    Structured outputs (e.g., a standard welcome message) often constrained the AI, preventing it from adding creative elements like suggesting nearby cities to explore. We experimented with prompts to strike a balance, but results remained inconsistent.

Learn More

Pitch Deck

This is the default text value

Take a look

Wordware.ai Program

Try Wordware.ai to explore our personalisation features—test with premade personas or input your own context for a tailored experience.

Text it out
// Bento Box JS